2,994 research outputs found

    Separation of Powers in Post-Communist Government: A Constitutional Case Study of the Russian Federation

    Get PDF

    Fast acoustic streaming in standing waves : Generation of an additional outer streaming cell

    Get PDF
    Rayleigh streaming in a cylindrical acoustic standing waveguide is studied both experimentally and numerically for nonlinear Reynolds numbers from 1 to 30. Streaming velocity is measured by means of laser Doppler velocimetry in a cylindrical resonator filled with air at atmospheric pressure at high intensity sound levels. The compressible Navier-Stokes equations are solved numerically with high resolution finite difference schemes. The resonator is excited by shaking it along the axis at imposed frequency. Results of measurements and of numerical calculation are compared with results given in the literature and with each other. As expected, the axial streaming velocity measured and calculated agrees reasonably well with the slow streaming theory for small ReNL but deviates significantly from such predictions for fast streaming (ReNL > 1). Both experimental and numerical results show that when ReNL is increased, the center of the outer streaming cells are pushed toward the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes

    Borrowed alleles and convergence in serpentine adaptation

    Get PDF
    ACKNOWLEDGMENTS. We thank members of the L.Y. and K.B. laboratories for helpful discussions. This work was supported through the European Research Council Grant StG CA629F04E (to L.Y.); a Harvard University Milton Fund Award (to K.B.); Ruth L. Kirschstein National Research Service Award 1 F32 GM096699 from the NIH (to L.Y.); National Science Foundation Grant IOS-1146465 (to K.B.); NIH National Institute of General Medical Sciences Grant 2R01GM078536 (to D.E.S.); and Biotechnology and Biological Sciences Research Council Grant BB/L000113/1 (to D.E.S.)Peer reviewedPublisher PD
    corecore